Cálculo 2 - Limite Definição

Cálculo 2 - Limite á Duas Variáveis

Definição: Seja f uma função cujo domínio DR2 contém pontos arbitrariamente próximos de (a,b). Dizemos que o limite de f(x,y) quando (x,y) tende a (a,b) é L e escrevemos

lim(x,y)(a,b)f(x,y)=L

se para todo número ϵ>0 existe um número correspondente δ>0 tal que se (x,y)D e 0<(xa)2+(yb)2<δ então |f(x,y)L|<ϵ.

Exemplo: Verificar que lim(x,y)(0,0)3x2yx2+y2=0.
Seja ϵ>0, queremos determinar um δ>0 tal que se
0<x2+y2<δ então |3x2yx2+y2|<ϵ
Considerando x2>0 e y2>0, como x2+y2>0 e 3x2y>0sey0e3x2y<0sey<0 com (x,y)DR2, temos
0<x2+y2<δentão3x2|y|x2+y2<ϵ

Como y20 logo x2+y2x2 assim x2x2+y21 e portanto

3x2|y|x2+y2(3|y|)=3y2<3x2+y2

Como, se 3x2+y2<ϵ logo 3x2|y|x2+y2<ϵ assim se escolhermos δ=ϵ3 e fizermos 0<x2+y2<δ tal que,
3x2+y2<ϵ de forma que 3x2|y|x2+y2<ϵ obtendo-se x2+y2<ϵ3.

Assim se escolhermos δ=ϵ3 e fizermos 0<x2+y2<δ teremos,

|3x2yx2+y2|<3x2+y2<3δ=3(ϵ3)=ϵ.



(Conteúdo gerado a partir de arquivo .tex com aplicação Pandoc. Exemplo (pelo terminal): pandoc meu-texto.tex -s --mathjax -o meu-texto.html).
Foi usado,
Pandoc: https://pandoc.org/demos.html
MathJax.
Requer adição do script do MathJax no cabeçalho do blog.

Github WSRicardo

Nenhum comentário:

Postar um comentário